Multistep partitioning causes significant stable carbon and hydrogen isotope effects during volatilization of toluene and propan-2-ol from unsaturated sandy aquifer sediment

authors

  • Zamane Sarah
  • Gori Didier
  • Höhener Patrick

keywords

  • Carbon-13
  • Partitioning
  • Soil venting
  • Remediation
  • Deuterium

document type

ART

abstract

This study aimed at investigating whether stable isotopes can be used to monitor the progress of volatile organic compounds (VOCs) volatilization from contaminated sediment during venting. Batches of a dry aquifer sediment were packed into stainless steel HPLC columns, humidified with distilled water and later contaminated by either liquid toluene or propan-2-ol. The VOCs were then volatilized by a stream of gas at room temperature, and the concentrations and stable isotope ratios of gaseous VOCs were recorded by isotope-ratio mass spectrometry. During early stages of volatilization of toluene, the isotope ratios Δδ13C shifted to more negative values by about −3 to −5‰ and the Δδ2H by more than −40‰, while the concentration remained at or near initial saturated vapor concentration. Depletion of the isotope ratios in the gas was explained by the vapor-liquid fractionation process, which is amplified by successive self-partitioning steps of gaseous VOC into remaining liquid VOC. For propan-2-ol the carbon isotope shift was negative like for toluene, whereas the H shift was positive. Hydrogen bonding in the liquid propan-2-ol phase causes a normal vapor-liquid H isotope effect which was described already in classical literature. The isotope shifts in the present experiments are larger than previously reported shifts due to phase-change processes and reach the magnitude of shifts usually observed in kinetic isotope fractionation.

more information